<u>American University of Beirut</u> <u>Mathematics Department</u> <u>Math 204 Spring 2013-2014</u> <u>Quiz I</u>

<u>Time:</u> 70 min.

<u>Name</u> :		ID#:	
Circle your problen	n solving section numl	ber below:	
• Instructor : <u>Ms. Mic</u>	<u>hella Bou Eid</u>		
Sec 1 : Th @ 3 :30	Sec 2 : Th	n @ 2 :00	
• Instructor : <u>Ms. Jour</u>	mana Tannous		
Sec 4 : F @ 9 :00	Sec 5 : F @ 10 :00	Sec 6 : F @ 11 :00	Sec 7: F @ 1 :00
• Instructor : <u>Mrs Ma</u>	<u>aha Itani-Hatab</u>		
Sec 8: M @ 1 :00	Sec 9 : M @ 8 :00	Sec 10: M @ 10 :00	Sec 11: M @ 12 :00
• Instructor : <u>Ms.Ran</u>	a Nassif		
Sec 12: W @ 1 :00	Sec 13 : W @ 12	:00	
• Instructor : <u>Ms. Naj</u>	iwa Fuleihan		
Sec 14 : T @ 8 :00	Sec 15 : T @	11 :00 Sec 16 : T @	9 :30

 # of correct answers : ----- Grade of Part I

 # of wrong answers : ----- 42%

 1.
 2.
 3.
 4.
 5.
 6.
 Grade of Part II
 Final Grade

 58 %
 58 %
 58 %
 58 %
 58 %
 58 %

<u>Answer table for Part I</u>

1	2	3	4	5	6	7	8	9	10	11	12

(42 %) <u>Part One</u>: 12 multiple choice questions, with 3.5% for each correct answer and - 0.5 % penalty for each wrong.

Circle the correct answer then, copy your answers as a, b, c or d on the table provided on page 1:

1.
$$\begin{pmatrix} a^{2}-1 & 0 \\ 5 & -2 \\ -3 & 3 \end{pmatrix} + \frac{5}{2} \begin{pmatrix} 0 & 2 \\ 4 & 8 \\ 6 & 10 \end{pmatrix} = \begin{pmatrix} 8 & a^{2}-11 \\ -5a & 2b \\ 6c & -7d \end{pmatrix}, \text{ then } d =$$

a) 3 b) -3 c) 4 d) -4
If $A = \begin{pmatrix} \frac{1}{2} & -\frac{1}{4} \\ 5 & \frac{3}{2} \end{pmatrix}$ then (Answer the following two questions)
2. $A^{-1} =$
a) $\begin{pmatrix} \frac{3}{4} & \frac{1}{8} \\ -5 & \frac{1}{2} \end{pmatrix}$ b) $\begin{pmatrix} \frac{3}{2} & \frac{1}{4} \\ -5 & \frac{1}{2} \end{pmatrix}$ c) $\begin{pmatrix} 5 & -\frac{1}{2} \\ -3 & -1 \\ \frac{1}{2} & -\frac{1}{4} \end{pmatrix}$ d) $\begin{pmatrix} -\frac{5}{2} & \frac{1}{4} \\ \frac{3}{4} & \frac{1}{8} \end{pmatrix}$
3. If $A = \begin{pmatrix} \frac{1}{2} & -\frac{1}{4} \\ 5 & \frac{3}{2} \end{pmatrix}$ and $B = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ then the solution X of the system of equations AX=B is
a) $\begin{pmatrix} 3 \\ -\frac{1}{2} \end{pmatrix}$ b) $\begin{pmatrix} -\frac{1}{2} \\ 3 \end{pmatrix}$ c) $\begin{pmatrix} 10 \\ 7 \end{pmatrix}$ d) $\begin{pmatrix} -17 \\ 8 \end{pmatrix}$
4. The determinant of the matrix $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 5 & 3 & 0 & 0 \\ -8 & -1 & 7 & 0 \\ 5 & 1 & -8 & -1 \end{pmatrix}$ is equal to:
a) -21 b) 0 c) 221 d) 1

	$A = (a_{ij})_{5\times 4}$ is defined	as $a_{ij} = \begin{cases} j & i \neq j \\ j^2 + 2i & if i \neq j \end{cases}$	then $7a_{33} - \frac{1}{5}a_{24} =$
a) 17	b) 14	c) 12	d) 10
6. If $5_{6}C_{3} - \frac{4}{3}$	$\frac{P_3}{2} = 2 \times {}_nC_2 + n + 7$	7 then $n =$	
a) -10	b) 10	c) 9	d) -9
7. If the determ	inant of a (3×3) matrix	tix A is -4 then det $(3A(A))$	(A^{-1}) is
a) –15	b) -45	c) -135	d) -108
8. A woman has if two of the	s 11 close friends, in l m are not on good ter	now many ways can she inv ms and will not attend toge	vite 5 of them to dinner ther?
a) $_{9}C_{5}$	b) $_{11}C_5$	c) $_{9}C_{5} + 2 \times _{9}C_{4}$	d) $_{9}C_{5} \times _{9}C_{4}$
9. A secretary h In how many	as 12 different folder ways can she arrange	s, 5 black, 3 blue and 4 yell e them on a shelf if she war	ow.
a) 12 !	b) 5 ! 3! 4 !	c) 3! 9!	d) 5! 7 !
10. In how many	ways can a grocer a	rrange on a shelf : 3 identi	cal bottles of Cola, 2 identical
bottles of Mi	randa, 2 identical bott	les of Seven Up,1 bottle of	water and 1 bottle of juice?
bottles of Mi a) 90720	randa, 2 identical bott b)10080	c) 15120	water and 1 bottle of juice? d) 50400
bottles of Mi a) 90720 If $A_c = \begin{pmatrix} 3\\ y\\ -2 \end{pmatrix}$ 11. then	randa, 2 identical bott b)10080 $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	c) 15120	water and 1 bottle of juice? d) 50400 ix A= $\begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & -1 \\ -1 & 3 & 2 \end{pmatrix}$
bottles of Mi a) 90720 If $A_c = \begin{pmatrix} 3 \\ y \\ -2 \end{pmatrix}$ 11. then a) $x = -1$ and y	randa, 2 identical bott b)10080 $\begin{array}{r} x & 3\\ 2 & -5\\ 2 & 1 & -2 \end{array}$ is the mat =-4	the field of the off (1.5) for the field of	water and 1 bottle of juice? d) 50400 ix A= $\begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & -1 \\ -1 & 3 & 2 \end{pmatrix}$
bottles of Mi a) 90720 If $A_c = \begin{pmatrix} 3 \\ y \\ -2 \end{pmatrix}$ 11. then a) $x = -1$ and $y = -1$ c) $x = 1$ and $y = -1$	randa, 2 identical bott b)10080 $\begin{array}{r} x & 3\\ 2 & -5\\ 2 & 1 & -2 \end{array}$ is the mat = -4	the field of the off $x = 0$ for the field of the field	water and 1 bottle of juice? d) 50400 ix A= $\begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & -1 \\ -1 & 3 & 2 \end{pmatrix}$
bottles of Mi a) 90720 If $A_c = \begin{pmatrix} 3 \\ y \\ -2 \end{pmatrix}$ 11. then a) $x = -1$ and y c) $x = 1$ and $y = -1$ 12. det A=	randa, 2 identical bott b)10080 $\begin{array}{r} x & 3\\ 2 & -5\\ 2 & 1 & -2 \end{array}$ is the mat = -4 -4	the field of the off $x = 0$ for the field of $x = 0$ for the field $x = 0$ for $x = 0$ f	water and 1 bottle of juice? d) 50400 ix A= $\begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & -1 \\ -1 & 3 & 2 \end{pmatrix}$

Part two: Answer each of the following questions. (Justify your answer and show your work).

(58%)

1. Given the system AX=B,
$$\begin{cases} -2x_1 - 3x_2 - 2x_3 = 2\\ x_1 + x_3 = 0\\ 5x_1 - 2x_2 = 3 \end{cases}$$

- a) Rewrite the first two columns of A to find the determinant of A.(repeated columns method)
- b) Use Cramer's rule to find **only** x_3 .

(6%)

2. If
$$A = \begin{pmatrix} 1 & x \\ 4+x & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ x & 3 \end{pmatrix}$ are two matrices of order 2, find x

so that $2 \det A = 3 + \det B$

(4%)

3. Given the following matrices,

$$A = \begin{pmatrix} 3 & 0 & 4 \\ -2 & -3 & 2 \\ 1 & 2 & 1 \end{pmatrix} , \quad B = \begin{pmatrix} 2 & -5 \\ 1 & -3 \\ 0 & 2 \end{pmatrix} \text{ and } C = \begin{pmatrix} 0 & 3 \\ -1 & 2 \end{pmatrix}$$

• Find if possible

a) $3BC - I^2$, where I is the identity matrix.

(3%)

b)
$$\boldsymbol{B}^T \boldsymbol{A}^T$$

(3%)

c)
$$(AB)^T B + CC^{-1}$$

(3%)

d)
$$(A^3IB - C)^0$$

(2%)

• If D and E are two matrices such that dimD = (2×5) and dimE = (3×5) , find dim I and dim O if $(DE^T + C^{-1}O)^T = EID^T$, where I is the identity matrix and O is the zero matrix.

(3%)

4. Given the system of linear equations
$$\begin{cases} 3x_1 + 12x_2 - 3 = x_2 - 4x_3 \\ -2x_1 - 3x_2 - 2x_3 + 3 = 5 \\ 2x_2 + x_3 = -x_1 \end{cases}$$

a) Write the system in matrix form as AX= B.
b) Use the Gaussian method to find A⁻¹.
c) Use A⁻¹ to solve the system (14%)

5.	Given two families: Mr. X, his wife and his son, Mr.Y his wife and his three daughters.
	a) In how many ways can they sit on a bench?
(2%)	b) In how many ways can they sit on a bench if the two wives are to sit together?
(2%)	
(2%)	c) In how many ways can they sit on a bench if the men are to sit together ,the women are to sit together, and the children are to sit together ?
	d) In how many ways can they sit on a bench if the two fathers are to sit one on each edge?
(2%)	
	e) In how many ways can they sit on a bench if the children are to sit in the middle?
(2%)	
6.	A company places a 7-symbol code on each unit product. The code consists of 4 digits followed by 3 letters.
	 (The English alphabet consists of 26 letters: 5 vowels {a, e, i, o, u} and 21 consonants) How many different codes are possible?
(2%)	
	• How many different codes are possible if:
	a) the first digit is odd and the letters are distinct?
(2%)	
	b) the digits are distinct less than 7, and the first two letters are not vowels ?
(2%)	

c) the digits are chosen from the set {2,3,7,9} and the letters alternate between vowels and consonants?

(2%)

d) any letter can be used and the digits are the arrangements of all the digits of the number 4477 ?

(2%)

1	2	3	4	5	6	7	8	9	10	11	12
d	a	b	a	d	c	d	c	d	c	a	d